Syntheses and crystal structures of bi- and tri-metallic complexes containing a trioxoosmium(viII) moiety \dagger

Wa-H ung Leung, ${ }^{*} \not \ddagger^{, a}$ J oyce L. C. C him ${ }^{\text {a }}$ and Wing-Tak Wong ${ }^{\text {b }}$
${ }^{\text {a }}$ D epartment of Chemistry, The H ong K ong U niversity of Science and Technology, Clear W ater Bay, K owloon, H ong K ong
${ }^{\text {b }}$ D epartment of C hemistry, The U niversity of H ong K ong, Pokfulam R oad, Hong K ong

Abstract

Interaction of cis-[Pt(dppm) $\left.)_{2}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]\left[\mathrm{dppm}=\right.$ bis(diphenylphosphino)methane], cis-[Pt(Bupy) $\left.\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]$ (Bupy = 4-tert-butylpyridine), [$\left[\mathrm{r}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)\right]$, and $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{OH}_{2}\right)(\mathrm{OTs})\right]$ (cod = cycloocta-1,5-diene, OTs = tosylate) with $\left[\mathrm{NBu}_{4}{ }_{4}\right]\left[\mathrm{N} \mathrm{OsO}_{3}\right]$ afforded bimetallic nitrido-bridged complexes cis-[Pt(dppm) $\left.\left(\mathrm{N} \mathrm{OsO}_{3}\right)_{2}\right]$ 3, trans- $\left[\mathrm{Pt}(\mathrm{Bupy})_{2}\left(\mathrm{NOSO}_{3}\right)_{2}\right] 4,\left[\mathrm{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NOsO}_{3}\right)\right] 5$ and $\left[\left\{\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NOsO}_{3}\right)\right\}_{2}\right] 6$, respectively. Complex 4 crystallises in the $P \overline{1}$ space group with $a=7.936(1), b=10.758(2), c=7.738(1) \AA, \alpha=100.02(1), \beta=99.75(1)$, $\gamma=101.75(1)^{\circ}, U=622.5(2) \AA^{3}$ for $\mathrm{Z}=1$. The $\mathrm{Pt}-\mathrm{N}(\mathrm{Os}), \mathrm{Os}-\mathrm{N}$ and the mean Os - O distances are 1.958(7), $1.681(7)$ and $1.724 \AA$, respectively. Complex 5 crystallises in the $P 2_{1} / n$ space group with $a=10.124(1)$, $b=15.564(2), c=22.623(3) \AA, \beta=100.08(2)^{\circ}, U=3509.7(7) \AA^{3}$ for $Z=4$. The $\mathrm{Ir}-\mathrm{N}, \mathrm{Os}-\mathrm{N}$ and the mean $\mathrm{Os}-\mathrm{O}$ distances are $1.998(7), 1.710(7)$ and $1.718 \AA$, respectively. Treatment of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{N} \mathrm{OsO}_{3}\right)\right] \mathbf{1}$ with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{N} \mathrm{Ph}$ gave the N -phosphinimine complex $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{N}\left(=\mathrm{PPh}_{3}\right) \mathrm{Ph}\right\}\right]\left[\mathrm{NOsO}_{3}\right]$ 7. Complex 7 crystallises in the $P 2_{1} / n$ space group with $a=8.780(1), b=20.781(2), c=20.711(5) \AA, \beta=91.23(1)^{\circ}, U=3788.0(9) \AA^{3}$ for $Z=4$. The $\mathrm{Au}-\mathrm{N}$ distance is 2.091(8) \AA and the $\mathrm{C}-\mathrm{N}-\mathrm{P}$ angle in the phosphinimine is $127.0(7)^{\circ}$. Reaction of 1 with Bupy led to substitution of Bupy for $\left[\mathrm{NOsO}_{3}\right]$ and formation of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{Bupy})\right]\left[\mathrm{NOsO}_{3}\right]$. Reaction of $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right) \mathrm{Cl}\right]\left[\mathrm{dppf}=1,1^{\prime}\right.$-bis(diphenylphosphino)ferrocene] with $\left[\mathrm{N} \mathrm{Bu}_{4}{ }_{4}\right]\left[\mathrm{NOsO}_{3}\right]$ afforded the trimetallic complex $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{N} \mathrm{OsO}_{3}\right) \mathrm{Cl}\right]$ 11. Complex 11 crystallizes in the $\mathrm{P} 2_{1} / \mathrm{c}$ space group with $\mathrm{a}=20.058(2)$, $b=14.899(1), c=23.949(2) \AA, \beta=114.57(2)^{\circ}, U=6508(1) \AA^{3}$ for $Z=8$. The mean $\mathrm{Pt}-\mathrm{N}, \mathrm{Os}-\mathrm{N}$ and $\mathrm{Os}-\mathrm{O}$ distances are 2.06, 1.66 and $1.67 \AA$, respectively.

Oxoosmium(viiI) complexes have attracted much attention because of their applications to organic syntheses, particularly dihydroxylation ${ }^{1}$ and aminohydroxylation ${ }^{2}$ of alkenes by $\left[\mathrm{OsO}_{4}\right]$ and $\left[\mathrm{Os}(\mathrm{NR}) \mathrm{O}_{3}\right]$ ($\mathrm{R}=$ alkyl), respectively. The significance of these reactions is highlighted by the seminal works of Sharpless and co-workers, who have successfully developed versatile syntheses of optically pure vicinal diols and amino alcohols via enantioselective osmium-catalysed dihydroxylation ${ }^{3}$ and aminohydroxylation ${ }^{4}$ of alkenes, respectively. In an effort to explore new reactivities of oxoosmium(viII) complexes, we set out to investigate the electronic influence of the substituent on nitride (X) on the reactivity of the imidoosmium(viII) complex $\left[\mathrm{Os}(\mathrm{NX}) \mathrm{O}_{3}\right]$. To this end, a series of bimetallic nitridobridged trioxoosmium(viii) complexes of the type $\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{N} \equiv\right.$ OsO_{3}] ($\mathrm{M}=$ e electrophilic metal; $\mathrm{L}=\mathrm{PR}_{3}, \mathrm{CO}$, etc.) are synthesised. Of particular interest are the osmate(viii) complexes containing square planar platinum(II) and iridium(I) centres, which may promote the reactivities of unsaturated organic substrates with the trioxoosmium(viII) moiety. We describe here the syntheses and reactivities of some bi- and tri-metallic complexes with a trioxoosmium(viII) moiety. Preliminary results of this work have been published in a communication. ${ }^{5}$

Experimental

All manipulations were carried out under nitrogen using standard Schlenk techniques. Solvents were purified and distilled prior to use; N M R spectra were recorded on a Bruker ALX 300 spectrometer, chemical shifts (δ) were reported with referenceto $\mathrm{SiM}_{4}\left({ }^{1} \mathrm{H}\right)$ and $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. Infrared spectra (Nujol) were recorded on a Perkin-Elmer 16 PC FT-IR spectrophotometer, mass spectra were obtained on a Finnigan TSQ-7000 spec-

[^0]trometer. Cyclic voltammetry was performed with a Princeton A pplied Research (PAR) M odel 273A potentiostat, the working and reference electrodes were glassy carbon and $\mathrm{Ag}-\mathrm{AgNO}_{3}$ ($0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ in acetonitrile), respectively, potentials were reported with reference to the ferrocenium-ferrocene couple. Elemental analyses were performed by Medac Ltd., Brunel University, UK .

M aterials

The preparations of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NOsO}_{3}\right)\right] \quad \mathbf{1}$, cis-[Pt$\left.\left(\mathrm{PM} \mathrm{e}_{3}\right)_{2}\left(\mathrm{NOsO}_{3}\right)_{2}\right] 2$ and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{N}\left(=\mathrm{PPh}_{3}\right) \mathrm{Ph}\right\}\right]\left[\mathrm{NOsO}_{3}\right] 7$ have been reported previously. ${ }^{5}$ The compounds [$\mathrm{NBu}_{4}{ }_{4}$]$\left[\mathrm{NOsO}_{3}\right],{ }^{6} \quad$ cis- $\left[\mathrm{Pt}(\mathrm{Bupy})_{2} \mathrm{Cl}_{2}\right] \quad$ (Bupy $=4$-tert-butylpyridine), ${ }^{7}$ $\left[\mathrm{Pt}(\mathrm{dppm}) \mathrm{Cl}_{2}\right] \quad\left[\mathrm{dppm}=\right.$ bis(diphenylphosphino) methane], ${ }^{8}$ $\left[\mathrm{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right],{ }^{9}\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{OH}_{2}\right)(\mathrm{OTs})\right](\mathrm{cod}=$ cycloocta- $1,5-$ diene, OTs = tosylate), ${ }^{10}$ and $\left[\mathrm{Pt}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]\left[\mathrm{dppf}=1,1^{\prime}\right.$-bis(diphenylphosphino)ferrocene] ${ }^{11}$ were synthesised according to the literature methods.

Preparations

cis-[Pt(dppm) $\left.\left(\mathrm{NO} \mathrm{SO}_{3}\right)_{2}\right]$ 3. To a suspension of $\left[\mathrm{Pt}(\mathrm{dppm}) \mathrm{Cl}_{2}\right]$ ($0.1 \mathrm{~g}, 0.15 \mathrm{mmol}$) in thf $\left(10 \mathrm{~cm}^{3}\right.$) were added 2 equivalents of $\mathrm{AgO}_{3} \mathrm{SCF}_{3}$ ($79 \mathrm{mg}, 0.31 \mathrm{mmol}$) and the resulting mixture was stirred at room temperature overnight and filtered. To the filtrate was added a solution of $\left[\mathrm{NBu}_{4}{ }_{4}\right]\left[\mathrm{NOsO}_{3}\right](0.15 \mathrm{~g}, 0.3$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for a further hour. The yellow solid was collected and recrystallised from dimethylformamide (dmf)-ether (yield: $0.08 \mathrm{~g}, 50 \%$). NM R (CDCl_{3}) ${ }^{1} \mathrm{H}, \delta 5.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $7.67-7.99(\mathrm{~m}, 20 \mathrm{H}$, phenyl protons); ${ }^{31} \mathrm{P}, \delta-61.07\left(\mathrm{~d}^{2}{ }^{2} \mathrm{Jpt}_{\mathrm{pt}} 1458 \mathrm{~Hz}\right.$). IR (cm^{-1}): 890 [$\mathrm{v}(\mathrm{Os}=0)$] and $1080[\mathrm{v}(\mathrm{Os}=\mathrm{N})$] (Found: C, 28.2; H, 2.2; N, 2.0. Calc. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{O} \mathrm{s}_{2} \mathrm{P}{ }_{2} \mathrm{Pt}$: C, 27.7; H, 2.0; N, 2.6\%).
trans- $\left[\mathrm{Pt}(\mathrm{Bupy})_{2}\left(\mathrm{NOSO}_{3}\right)_{2}\right]$ 4. To a suspension of cis$\left[\mathrm{Pt}(\text { Bupy })_{2} \mathrm{Cl} \mathrm{I}_{2}\right](87 \mathrm{mg}, 0.16 \mathrm{mmol})$ in acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right.$,
 $\mathrm{Ph}\}]\left[\mathrm{NOsO}_{3}\right] 7$ and $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{NOsO}_{3}\right) \mathrm{Cl}\right] 11$

1:1) was added to 2 equivalents of $\mathrm{AgO}_{3} \mathrm{SCF}_{3}(83 \mathrm{mg}, 0.32$ $\mathrm{mmol})$. The mixture was stirred at room temperature overnight and filtered. To the filtrate was added a solution of $\left[\mathrm{NBu}_{4}{ }_{4}\right]$ $\left[\mathrm{NOsO}_{3}\right](0.16 \mathrm{~g}, 0.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 2 h . The solvent was pumped off and the residue recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane to give X-ray quality yellow crystals (yield $50 \mathrm{mg}, 32 \%$). NMR(CDCl_{3}): ${ }^{1} \mathrm{H}, \delta 1.37(\mathrm{~s}, 9 \mathrm{H}$, Bu^{t}), 7.55 (d, $4 \mathrm{H}, \mathrm{H}_{\mathrm{m}}$) and $8.38\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right)$. IR (cm^{-1}): 888, 906 [$\mathrm{v}(\mathrm{Os}=0)$] and $1078[\mathrm{v}(\mathrm{Os}=\mathrm{N})]$. UV/VIS $\left(\mathrm{CH}_{2} \mathrm{Cl} \mathrm{I}_{2}\right) ; \lambda / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$) 352 (14000), 421 (2890), 437 (2930) and 467 (1540) (Found: C, 22.0; H, 2.7; N, 5.4. Calc. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{O}_{2} \mathrm{Pt}$: C, 22.3; H, 2.7; N, 5.8\%).
$\left[\mathrm{lr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NOsO}_{3}\right)\right]$ 5. To a suspension of $[\mathrm{Ir}(\mathrm{CO})$ $\left.\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right](0.13 \mathrm{~g}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ was added 1 equivalent of $\mathrm{AgO}_{3} \mathrm{SCF}_{3}(44 \mathrm{mg}, 0.17 \mathrm{mmol})$ and the mixture was stirred for 1 d and filtered. To the filtrate was added a solution of $\left[\mathrm{NBu}_{4}{ }_{4}\right]\left[\mathrm{N} \mathrm{OsO}_{3}\right](84 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ cm^{3}) and the mixture was stirred for a further hour. The solvent was pumped off and the residue recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane to give red crystals, which were suitable for an X-ray diffraction study (yield $0.15 \mathrm{~g}, 90 \%$). NMR (CDCl_{3}): ${ }^{1} \mathrm{H}$, $\delta 7.45-7.68$ (m, phenyl protons); ${ }^{31} \mathrm{p}, \delta 27.92$ (s). IR (cm^{-1}): 886, 896, $908[v(\mathrm{Os}=0)], 1098[v(\mathrm{~m}=\mathrm{N})]$ and $1986[\mathrm{v}(\mathrm{C} \equiv \mathrm{O})]$. U V/VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 350$ (5460) (Found: C, $44.6 ; \mathrm{H}, 3.2 ; \mathrm{N}, 1.4$. Calc. for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{rN} \mathrm{O} \mathrm{O}_{4} \mathrm{OsP}_{2}: \mathrm{C}, 44.6 ; \mathrm{H}, 3.0$; N, 1.4\%).
$\left[\left\{\mathrm{Rh}(\mathrm{Cod})\left(\mathrm{NOSO}_{3}\right)\right\}_{2}\right]$ 6. To a solution of $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{OH}_{2}\right)\right.$ (OTs)] ($0.1 \mathrm{~g}, 0.26 \mathrm{mmol}$) in acetone ($10 \mathrm{~cm}^{3}$) was added 1 equivalent of $\left[\mathrm{NBu}_{4}{ }_{4}\right]\left[\mathrm{NOSO}_{3}\right](0.13 \mathrm{~g}, 0.26 \mathrm{mmol})$ and the mixture was stirred for 1 h . The brown precipitate was collected, washed with acetone and recrystallised from dmf-diethyl ether (yield $0.17 \mathrm{~g}, 70 \%$). NMR [(CD $\left.)_{2} \mathrm{SO}\right]:{ }^{1} \mathrm{H}, \delta 2.32$ ($\mathrm{sbr}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.81\left(\mathrm{sbr}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$ and 4.67 ($\mathrm{sbr}, 4 \mathrm{H}$, olefinic protons). IR (cm^{-1}): $904[\mathrm{v}(\mathrm{Os}=0)]$ (Found: C, 21.7, H, 2.8; N, 3.1. Calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Os}_{2} \mathrm{Rh} \mathrm{h}_{2}$: C, 20.7; H, 2.6; N, 3.0\%).
$\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{Bupy})\right]\left[\mathrm{NOsO}_{3}\right]$ 8. To a solution of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(\mathrm{NOsO}_{3}\right)\right]$ ($71 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added 1 equivalent of Bupy ($0.015 \mathrm{~cm}^{3}, 0.1 \mathrm{mmol}$) and the mixture
was stirred at room temperature overnight. The solvent was pumped off and the residue was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane to give pale yellow crystals (yield $63 \mathrm{mg}, 75 \%$). N M R $\left(\mathrm{CDCl}_{3}\right)$: ${ }^{1 \mathrm{H}}, \delta 1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 7.55-7.62(\mathrm{~m}, 17 \mathrm{H}$, aromatic protons) and 8.59 (d, $2 \mathrm{H}, \mathrm{H}_{0}$ or Bupy); ${ }^{31 \mathrm{P}}, \delta 28.5(\mathrm{~s})$. IR $\left(\mathrm{cm}^{-1}\right)$: 868, $888[v(\mathrm{Os}=\mathrm{O})]$ and $1016[v(\mathrm{Os}=\mathrm{N})]$ (Found: $\mathrm{C}, 38.1 ; \mathrm{H}, 3.3$; N 3.1. Calc. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{AuN}_{2} \mathrm{O}_{3} \mathrm{O}$ sP: C, 38.3; $\left.\mathrm{H}, 3.3 ; \mathrm{N}, 3.3 \%\right)$.
[$\left.\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right] 9$ and $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right) \mathrm{Cl}\right]$ 10. To a solution of $\left[\mathrm{Pt}(\mathrm{dppf}) \mathrm{Cl}_{2}\right](0.1 \mathrm{~g}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added 2 equivalents of $\mathrm{AgO}_{3} \mathrm{SCF}_{3}(63 \mathrm{mg}, 0.24 \mathrm{mmol})$ and the solution was stirred at room temperature overnight. The solvent was pumped off and the residue was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether to give orange and red crystals, which can be separated by inspection or fractional recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (yield 70 mg). The orange product was identified as the ditriflate $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]$. NMR $\left(\mathrm{CDCl}_{3}\right)$: ${ }^{1} \mathrm{H}$, $\delta 4.49\left(\mathrm{~s} \mathrm{br}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.58\left(\mathrm{~s} \mathrm{br}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $7.48-7.78$ ($\mathrm{m}, 20 \mathrm{H}$, phenyl protons); ${ }^{31 \mathrm{p}}, \delta 8.04$ (t, ${ }^{1}{ }_{\mathrm{pt} \mathrm{p}} 2102 \mathrm{~Hz}$) (Found: C, 39.4; H, 3.1. Calc. for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{FeO}_{6} \mathrm{P}_{2} \mathrm{PtS} \cdot 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 39.2$; H, 3.1\%).
The red product was identified as the monotriflate [$\mathrm{Pt}(\mathrm{dppf})$ $\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right) \mathrm{Cl}$], which can be synthesised in good yield by reaction of $\left[\mathrm{Pt}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$ with 1 equivalent of $\mathrm{AgO}_{3} \mathrm{SCF}_{3} . \mathrm{NMR}$ (CDCl_{3}): ${ }^{1} \mathrm{H}, \delta 4.40-4.63$ (overlapping s, $8 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$) and 7.227.74 (m, 20 H , phenyl protons); ${ }^{31 \mathrm{p}}, \delta 17.53$ ($\mathrm{d},{ }^{1} \mathrm{~J}_{\text {pt-p }} 1993.5 \mathrm{~Hz}$) (Found: C, 44.2; $\mathrm{H}, 3.1$. Calc. for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{CIF}_{3} \mathrm{FeO}_{3} \mathrm{P}_{2} \mathrm{PtS}: \mathrm{C}$, 45.0; H, 3.0\%).
$\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{NO} \mathrm{SO}_{3}\right) \mathrm{Cl}\right]$ 11. To a solution of $9(0.14 \mathrm{~g}, 0.15$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added 1 equivalent of [$\mathrm{NBu}_{4}{ }_{4}$]$\left[\mathrm{NOsO}_{3}\right](74 \mathrm{mg}, 0.15 \mathrm{mmol})$ and the mixture was stirred for 2 h . The solvent was pumped off and the residue recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane to give orange crystals (yield 0.14 g , 90%). NMR (CDCl_{3}): ${ }^{1} \mathrm{H}, \delta 3.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.37(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $7.38-7.92(\mathrm{~m}, 20 \mathrm{H}$, phenyl protons); ${ }^{31} \mathrm{P}, \delta 14.90(\mathrm{~s})$ and 15.01 (s). IR($\left.\mathrm{cm}^{-1}\right): 888,908$ [$\mathrm{v}(\mathrm{Os}=0)$] and $1096\left[\mathrm{v}(\mathrm{Os}=\mathrm{N})\right.$]. UVNIS $\left(\mathrm{CH}_{2} \mathrm{Cl} \mathrm{I}_{2}\right): \lambda_{\text {max }} / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 322$ (7510) (Found: C, 39.3; H, 2.8; $\mathrm{N}, 1.4$. Calc. for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{CIF} \mathrm{eN} \mathrm{O} \mathrm{OSS}_{2} \mathrm{Pt}: \mathrm{C}, 39.4 ; \mathrm{H}, 2.7 ; \mathrm{N}, 1.4 \%$).

Scheme 1 (i) $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)\right]$; (ii) cis- $\left[\mathrm{PtL}_{2}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]$; (iii) cis[$\left.\mathrm{Pt}(\mathrm{Bupy})_{2} \mathrm{Cl}_{2}\right]$; (iv) $\left[\mathrm{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)\right]$; (v) $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{OH}_{2}\right)(\mathrm{OTs})\right] ;$ (vi) $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right) \mathrm{Cl}\right]$

X-R ay crystallography

A summary of crystal data and experimental details for complexes 4, 5, $\mathbf{7}$ and $\mathbf{1 1}$ are listed in Table 1. Intensity data were made on a Rigaku AFC7R diffractometer (for 4 and 7), an Enraf-Nonius CAD4 diffractometer (for 5), and a MAR research image plate scanner (for 11) at ambient temperature using graphite-monochromated $\mathrm{M} \mathrm{o-K} \alpha$ radiation ($\lambda 0.71073$ \AA). All intensity data were corrected for Lorentz and absorption effects. Semiempirical absorption corrections (ψ scan) were applied for 4, 5and 7. However, no absorption correction was made for 11. The space group of the crystals was determined by their systematic absences and L aue symmetry. It is noteworthy that for 11 the reported cell data can be transformed into an orthorhombic C-centre system. However, the required mmm L aue symmetry is absent. The three structures were solved by direct methods and refined on F by full-matrix least-squares analysis. Some non-hydrogen atoms were refined anisotropically while the rest were refined isotropically.
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1997, I ssue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/568.

Results and D iscussion

Bimetallic nitrido-bridged osmate(viII) complexes

Bimetallic nitrido-bridged vanadium(v) complexes $\mathrm{V} \equiv \mathrm{N}-\mathrm{M}$ ($M=R h$ or Ir) have been previously isolated by Doherty and co-workers ${ }^{12}$ from the reaction of $X_{3} \mathrm{~V}=\mathrm{NSiM} \mathrm{e}_{3}(\mathrm{X}=$ halide) with $\mathrm{F}-\mathrm{ML}_{2}(\mathrm{CO})\left(\mathrm{L}=\mathrm{PR}_{3}\right)$ [equation (1)]. We found that

$$
\begin{align*}
& X_{3} V=N \text { SiM }_{3}+\left[F-M L_{2}(C O)\right] \longrightarrow \\
& {\left[X_{3} V \equiv N-M L_{2}(C O)\right]+\operatorname{SiF~M~e_{3}}} \tag{1}
\end{align*}
$$

bimetallic nitrido-bridged osmate(viir) complexes could be prepared conveniently by metathesis of $\left[\mathrm{NOsO}_{3}\right]^{-}$with metal triflates $\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)\right]$ ($\mathrm{M}=$ electrophilic metal) [equation (2)].

$$
\begin{align*}
& {\left[\mathrm{NBu}_{4}{ }_{4}\left[\mathrm{NOSO}_{3}\right]+\right.} {\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)\right] } \\
& {\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{N}=\mathrm{OSO}_{3}\right] } \tag{2}
\end{align*} \longrightarrow+\left[\mathrm{NBu}_{4}{ }_{4}\left[\mathrm{O}_{3} \mathrm{SCF}_{3}\right]\right.
$$

The syntheses of the nitrido-bridged osmate(viiI) complexes are summarised in Scheme 1. Thecharacterisation and crystal structures of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NOsO}_{3}\right)\right] 1$ and cis-[$\left.\mathrm{Pt}\left(\mathrm{PM} \mathrm{e}_{3}\right)_{2}\left(\mathrm{NOsO}_{3}\right)_{2}\right]$ 2, which were synthesised by the reactions of $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{NOsO}_{3}\right]$ with $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)\right]$ and cis-[Pt $\left.\left(\mathrm{PM} \mathrm{e}_{3}\right)_{2}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]$,

Fig. 1 Perspective view of trans-[Pt(Bupy $\left.)_{2}\left(\mathrm{NOsO}_{3}\right)_{2}\right]$

Fig. 2 Perspective view of $\left[\operatorname{lr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NOsO}_{3}\right)\right] 5$

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for trans$\left[\mathrm{Pt}(\mathrm{Bupy})_{2}\left(\mathrm{NOsO}_{3}\right)_{2}\right]$

Pt-N (1)	$2.040(7)$	$\mathrm{Pt}-\mathrm{N}(2)$	$1.958(7)$
$\mathrm{Os}(1)-\mathrm{O}(1)$	$1.716(7)$	$\mathrm{Os}(1)-\mathrm{O}(2)$	$1.711(8)$
$\mathrm{Os}(1)-\mathrm{O}(3)$	$1.745(8)$	$\mathrm{Os}(1)-\mathrm{N}(2)$	$1.681(7)$
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}\left(1^{*}\right)$	180.0	$\mathrm{~N}(1)-\mathrm{Pt}-\mathrm{N}(2)$	$89.4(3)$
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}\left(2^{*}\right)$	$90.6(3)$	$\mathrm{N}\left(1^{*}\right)-\mathrm{Pt}-\mathrm{N}(2)$	$90.6(3)$
$\mathrm{N}\left(1^{*}\right)-\mathrm{Pt}-\mathrm{N}\left(2^{*}\right)$	$89.4(3)$	$\mathrm{N}(2)-\mathrm{Pt}-\mathrm{N}\left(2^{*}\right)$	180.0
$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{O}(2)$	$109.9(4)$	$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{O}(3)$	$111.5(4)$
$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{N}(2)$	$109.0(4)$	$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{O}(3)$	$109.2(4)$
$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{N}(2)$	$108.5(4)$	$\mathrm{O}(3)-\mathrm{Os}(1)-\mathrm{N}(2)$	$108.7(4)$
$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{Os}(1)$	$172.5(5)$		

respectively, have been described previously. ${ }^{5}$ Interaction of cis$\left[\mathrm{Pt}(\mathrm{dppm})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]$ and cis-[Pt(Bupy) $\left.\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]$ with $\left[\mathrm{NOSO}_{3}\right]^{-}$afforded $\left[\mathrm{Pt}(\mathrm{dppm})\left(\mathrm{NOsO}_{3}\right)_{2}\right] \quad 3$ and trans$\left[\mathrm{Pt}(\text { (Bupy })_{2}\left(\mathrm{NOsO}_{3}\right)_{2}\right]$ 4, respectively. The $\mathrm{Os}=\mathrm{O}$ and $\mathrm{Os}=\mathrm{N}$ stretching frequencies in the IR spectra of complexes 3 and 4 are similar to those found for complex $2 .{ }^{5}$ The structure of $\mathbf{4}$ has been established by X-ray crystallography. A perspective view of 4 is shown in Fig. 1; selected bond lengths and angles are given in Table 2. The geometry around Pt is square planar with the two $\left[\mathrm{NOsO}_{3}\right]$ groups trans to each other. The Pt-N (Os) distance of 1.958 (7) \AA is slightly shorter than those in complexes $\mathbf{2}^{5}$ and 11 (see below) because the trans influence for $\left[\mathrm{NOSO}_{3}\right]$ is smaller than that for phosphine. The reason why 4 prefers trans geometry, which is in contrast to $\mathbf{2}$, is not clear. The Os-N and the mean $\mathrm{Os}-0$ distances of $1.681(7)$ and 1.724 \AA, respectively, are similar to those for $\mathbf{1}$ and 2.

The Vaska-type complex $\left[\mathrm{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NOsO}_{3}\right)\right] \mathbf{5}$ was syn-

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $[\operatorname{lr}(\mathrm{CO})$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NOSO}_{3}\right)\right] 5$

$\operatorname{Ir}-\mathrm{P}(1)$	$2.321(3)$	$\operatorname{Ir}-\mathrm{P}(2)$	$2.327(3)$
$\operatorname{Ir}-\mathrm{N}(1)$	$1.998(7)$	$\mathrm{Ir}-\mathrm{C}(1)$	$1.83(1)$
$\mathrm{Os}-\mathrm{O}(2)$	$1.715(8)$	$\mathrm{Os}-\mathrm{O}(3)$	$1.730(9)$
$\mathrm{Os}-\mathrm{O}(4)$	$1.708(8)$	$\mathrm{Os}-\mathrm{N}(1)$	$1.710(7)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.14(1)$		
$\mathrm{P}(1)-\mathrm{Ir}-\mathrm{P}(2)$	$169.3(1)$	$\mathrm{P}(1)-\mathrm{Ir}-\mathrm{N}(1)$	$87.2(2)$
$\mathrm{P}(1)-\mathrm{Ir}-\mathrm{C}(1)$	$92.5(3)$	$\mathrm{P}(2)-\mathrm{Ir}-\mathrm{N}(1)$	$88.8(2)$
$\mathrm{P}(2)-\mathrm{Ir}-\mathrm{C}(1)$	$91.8(3)$	$\mathrm{N}(1)-\mathrm{Ir}-\mathrm{C}(1)$	$177.9(4)$
$\mathrm{O}(2)-\mathrm{Os}-\mathrm{O}(3)$	$109.9(4)$	$\mathrm{O}(2)-\mathrm{Os}-\mathrm{O}(4)$	$109.3(5)$
$\mathrm{O}(2)-\mathrm{Os}-\mathrm{N}(1)$	$108.6(4)$	$\mathrm{O}(3)-\mathrm{Os}-\mathrm{O}(4)$	$110.9(5)$
$\mathrm{O}(3)-\mathrm{Os}-\mathrm{N}(1)$	$109.2(4)$	$\mathrm{O}(4)-\mathrm{Os}-\mathrm{N}(1)$	$108.9(4)$
$\mathrm{Ir}-\mathrm{N}(1)-\mathrm{Os}$	$175.5(5)$	$\mathrm{Ir}-\mathrm{C}(1)-\mathrm{O}(1)$	$177(1)$

I
thesised by the reaction of $\left[\operatorname{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)\right]$ with [$\left.\mathrm{NOsO}_{3}\right]^{-}$, isolated as air-stable red crystals. Fig. 2 shows a diagram of the molecule; selected bond lengths and angles are given in Table 3. A s expected the geometry around Ir is square planar with the $\left[\mathrm{N} \mathrm{OsO}_{3}\right]$ group trans to the carbonyl. The Ir-P, $\mathrm{Ir}-\mathrm{C}$ and $\mathrm{Ir}-\mathrm{N}$ distances are normal by comparison with the isostructural iridium(I)-amide complex $\left[\mathrm{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(3,5-\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}\right)\right] .{ }^{13}$ The short $\mathrm{Os}-\mathrm{N}$ distance $[1.710(7) \AA$] and long Ir-N bond $[1.998(7) \AA$] is suggestive of the unsymmetric bridging mode of the nitride, i.e. $\operatorname{Ir}-\mathrm{N} \equiv \mathrm{O}$ s. The $v(\mathrm{C}=0)$ for 5 was found at $1986 \mathrm{~cm}^{-1}$, which is lower than that for $\left[\operatorname{lr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(3,5-\mathrm{M} \mathrm{e}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}\right)\right]\left(1941 \mathrm{~cm}^{-1}\right)^{13}$ and $[\mathrm{Ir}(\mathrm{CO})-$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\right]\left(1965 \mathrm{~cm}^{-1}\right)$, indicating that $\left[\mathrm{NOsO}_{3}\right]^{-}$is a weak donor ligand. On the basis of the CO stretching frequency, the donor strength of $\left[\mathrm{NOSO}_{3}\right]^{-}$is considered comparable to that of a nitrite ($1987 \mathrm{~cm}^{-1}$). ${ }^{14}$

Reaction of $\left[\mathrm{Pt}(\operatorname{cod})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]$ and ${ }^{\prime} \mathrm{Ir}(\mathrm{cod})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)^{\prime}$, which wereprepared in situ from $\left[\mathrm{Pt}(\operatorname{cod}) \mathrm{Cl}_{2}\right]$ and $\left[\{\mid \mathrm{Ir}(\operatorname{cod}) \mathrm{Cl}\}_{2}\right]$, respectively, with $\left[\mathrm{NOsO}_{3}\right]^{-}$led to isolation of uncharacterised insoluble brown solids. On the other hand, treatment of [R h (cod) $\left.\left(\mathrm{OH}_{2}\right)(\mathrm{OTs})\right]$ with $\left[\mathrm{NOsO}_{3}\right]^{-}$gave a well defined solid analysed as $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NOsO}_{3}\right)\right] 6$. This solid is insoluble in chlorinated solvents but readily dissolves in dmf and dimethyl sulfoxide. The ${ }^{1} H N M R$ spectrum of 6 shows signals characteristic of co-ordinated cod. In addition, the IR spectrum shows that $v(\mathrm{Os}=\mathrm{O})$ and $v(\mathrm{Os}=\mathrm{N})$ are shifted to higher frequency, indicating that the $\left[\mathrm{NOsO}_{3}\right]$ moiety in 6 is co-ordinated rather than a counter anion. U nfortunately, we were not ableto obtain X-ray quality crystals for 6 due to its poor solubilities in common organic solvents. We tentatively formulate 6 as a NOsO_{3}-bridged dirhodium(I) complex $\left[\{\mathrm{Rh}(\mathrm{cod})\}_{2}\left(\mu-\mathrm{NOsO}_{3}\right)_{2}\right]$, which is the first example of a complex with a bridging $\left[\mathrm{NOSO}_{3}\right]$ ligand.

Reactivities of bimetallic nitrido-bridged complexes

In an attempt to synthesise an imido(nitrido)osmium(viII) complex via oxo-imido exchange, we tried the reaction of complex 1 with phosphinimine. Treatment of 1 with $\mathrm{PhN}=\mathrm{PPh}_{3}$ resulted in substitution of the phosphinimine for $\left[\mathrm{NOsO}_{3}\right]$, instead of the oxo-imido exchange. The product was characterised as $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{N}\left(=\mathrm{PPh}_{3}\right) \mathrm{Ph}\right\}\right]\left[\mathrm{NOsO}_{3}\right] 7$ by X -ray crystallography. Fig. 3 shows a perspective view of the molecule; selected bond lengths and angles are given in Table 4. The $\mathrm{P}-\mathrm{Au}-\mathrm{N}$ linkage is essentially linear while the $\mathrm{C}-\mathrm{N}=\mathrm{P}$ angle in

Table 4 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left\{\mathrm{N}\left(=\mathrm{PPh}_{3}\right) \mathrm{Ph}\right\}\right]\left[\mathrm{NOSO}_{3}\right]$

$\mathrm{Au}-\mathrm{P}(2)$	$2.240(3)$	$\mathrm{Au}-\mathrm{N}(1)$	$2.091(8)$
$\mathrm{Os}-\mathrm{O}(1)$	$1.706(9)$	$\mathrm{Os}-\mathrm{O}(2)$	$1.699(8)$
$\mathrm{Os}-\mathrm{O}(3)$	$1.714(9)$	$\mathrm{Os}-\mathrm{N}(2)$	$1.696(9)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.607(9)$		
$\mathrm{P}(2)-\mathrm{Au}(1)-\mathrm{N}(1)$	$178.1(2)$	$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{O}(2)$	$109.8(4)$
$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{O}(3)$	$108.9(5)$	$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{N}(2)$	$109.1(6)$
$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{O}(3)$	$110.1(4)$	$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{N}(2)$	$109.9(5)$
$\mathrm{O}(3)-\mathrm{Os}(1)-\mathrm{N}(2)$	$108.9(5)$	$\mathrm{Au}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$115.7(6)$
$\mathrm{Au}(1)-\mathrm{N}(1)-\mathrm{P}(1)$	$115.6(5)$	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$127.0(7)$

Fig. 3 Perspective view of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{N}\left(=\mathrm{PPh}_{3}\right) \mathrm{Ph}\right\}\right]\left[\mathrm{NOsO}_{3}\right] 7$
the phosphinimine is $127.0(7)^{\circ}$. The $\mathrm{Au}^{1}-\mathrm{N}$ distance is similar to that in $1 .{ }^{4}$ There is no interaction of the Au centre with the osmate, which is essentially a counter anion.
In contrast to the imido(trioxo)osmium(viII) complexes, no reactions of complexes 1-4 with alkenes were observed. In an attempt to activate these osmate(viII) complexes by L ewis base complexation, or so-called 'ligand accerelation', ${ }^{15}$ we tried the reactions of 1 with alkenes in the presence of pyridine. Treatment of dimethylbut-2-ene with stoichiometric amounts of complex 1 and 4 -tert-butylpyridine (Bupy) led to isolation of an adduct analysed as $\mathbf{1}$-Bupy $\mathbf{8}$. No cycloaddition reaction of 1 with dimethylbut-2-ene occurred, as evidenced by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R spectroscopy. Complex 8 was, however, incorrectly formulated as the osmium-pyridine adduct $\left[\mathrm{OsO}_{3}\left\{\mathrm{NAu}\left(\mathrm{PPh}_{3}\right)\right\}\right.$ Bupy] in the previous communication. ${ }^{5}$ The correct structure for 8 should be $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\right.$ Bupy $\left.)\right]\left[\mathrm{NOsO}_{3}\right]$ because the $\mathrm{Os}=0$ and $\mathrm{Os}=\mathrm{N}$ stretching frequencies for 8 are close to the values for 7, in which the $\left[\mathrm{NOsO}_{3}\right]$ moiety is a counter anion. The [NOSO_{3}] group in $\mathbf{1}$ is quite labile and can be displaced easily apparently because the Au-N bond is weak.
Similar to Vaska complexes, 5 was found to undergo oxidative addition with M el . TheIR spectrum of the crude product, presumably $\left[\operatorname{lr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\mathrm{Me})\left(\mathrm{NOsO}_{3}\right)!\right]$, shows a $v(\mathrm{C} \equiv \mathrm{O})$ stretch at $2010 \mathrm{~cm}^{-1}$, which is typical for I r^{111} complexes. ${ }^{14,16}$ However, the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show that the crude product consists of three isomers, which have yet to be separated.

Trimetallic complexes

In the hope of activating the [NOsO_{3}] group by intramolecular electron transfer, trioxoosmium(viI) complexes containing the redox-active dppf ligand were synthesised. M etathesis of $\left[\mathrm{Pt}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$ with 2 equivalents of $\mathrm{AgO}_{3} \mathrm{SCF}_{3}$ led to the

Fig. 4 Perspective view of one of the two independent molecules in the unit cell for $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{NOSO}_{3}\right) \mathrm{Cl}\right] 11$

Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $[\operatorname{Pt}(\mathrm{dppf})$ $\left.\left(\mathrm{NOSO}_{3}\right) \mathrm{Cl}\right] 11$

$\mathrm{Pt}(1)-\mathrm{Cl}$	$2.317(5)$	$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.269(4)$
$\mathrm{Pt}(1)-\mathrm{P}(2)$	$2.265(5)$	$\mathrm{Pt}(1)-\mathrm{N}(1)$	$2.05(1)$
$\mathrm{Os}(1)-\mathrm{O}(1)$	$1.77(2)$	$\mathrm{Os}(1)-\mathrm{O}(2)$	$1.69(1)$
$\mathrm{Os}(1)-\mathrm{O}(3)$	$1.69(2)$	$\mathrm{Os}(1)-\mathrm{N}(1)$	$1.66(1)$
$\mathrm{Pt}(2)-\mathrm{Cl}(1)$	$2.354(6)$	$\mathrm{Pt}(2)-\mathrm{P}(3)$	$2.250(5)$
$\mathrm{Pt}(2)-\mathrm{P}(4)$	$2.287(5)$	$\mathrm{Pt}(2)-\mathrm{N}(2)$	$2.06(2)$
$\mathrm{Os}(2)-\mathrm{O}(4)$	$1.66(2)$	$\mathrm{Os}(2)-\mathrm{O}(5)$	$1.68(2)$
$\mathrm{Os}(2)-\mathrm{O}(6)$	$1.53(2)$	$\mathrm{Os}(2)-\mathrm{N}(2)$	$1.65(2)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	$85.0(2)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$175.4(2)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{N}(1)$	$83.5(4)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$99.6(2)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{N}(1)$	$168.1(4)$	$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{N}(1)$	$91.9(4)$
$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{O}(2)$	$108.7(8)$	$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{O}(3)$	$112(1)$
$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{N}(1)$	$108.1(9)$	$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{O}(3)$	$111.3(9)$
$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	$109.6(7)$	$\mathrm{O}(3)-\mathrm{Os}(1)-\mathrm{N}(1)$	$106.4(9)$
$\mathrm{Pt}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	$160.4(9)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{P}(3)$	$174.6(2)$
$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{P}(4)$	$87.7(2)$	$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{P}(4)$	$97.7(2)$
$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{N}(2)$	$90.4(5)$	$\mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{N}(2)$	$171.8(5)$
$\mathrm{O}(4)-\mathrm{Os}(2)-\mathrm{O}(5)$	$111(1)$	$\mathrm{O}(4)-\mathrm{Os}(2)-\mathrm{O}(6)$	107.1
$\mathrm{O}(4)-\mathrm{Os}(2)-\mathrm{N}(2)$	$110.6(8)$	$\mathrm{O}(5)-\mathrm{Os}(2)-\mathrm{O}(6)$	$116(1)$
$\mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{N}(2)$	$107.1(8)$	$\mathrm{O}(6)-\mathrm{Os}(2)-\mathrm{N}(2)$	$103(1)$
$\mathrm{Pt}(2)-\mathrm{N}(2)-\mathrm{Os}(2)$	$152(1)$		

isolation of a mixture of orange ditriflate $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]$ 9 and red monotriflate $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right) \mathrm{Cl}\right]$ 10, which can be separated by inspection or fractional crystallisation. Reaction of $\left[\mathrm{Pt}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$ with 1 equivalent of $\mathrm{AgO}_{3} \mathrm{SCF}_{3}$, however, gave the monotriflate as the major product. Treatment of 10 with $\left[\mathrm{NOSO}_{3}\right]^{-}$resulted in the formation of the trimetallic Feen-PtII-Os ${ }^{\text {VIII }}$ complex $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{NOsO}_{3}\right) \mathrm{Cl}\right]$ 11, the structure of which has been confirmed by X-ray diffraction. Fig. 4 shows a perspective view of one of the two independent molecules in the unit cell; selected bond lengths and angles are given in Table 5. A s expected, the geometry around Pt is square planar. The mean $\mathrm{Pt}-\mathrm{P}$ and $\mathrm{Pt}-\mathrm{Cl}$ bond distances in $\mathbf{1 1}$ are similar to those for $\left[\mathrm{Pt}(\mathrm{dppf}) \mathrm{Cl}_{2}\right] .{ }^{10}$ The mean $\mathrm{Os}-\mathrm{N}$ and $\mathrm{Os}-\mathrm{O}$ distances of 1.66 and $1.67 \AA$, respectively, are normal compared with other osmate(viII) complexes. Interestingly, the $\mathrm{Pt}-\mathrm{N}=\mathrm{O}$ s linkage in 11 is found to be slightly bent with an average angle of ca. 156.2°, this bending is attributed to the non-bonding repulsion between the NOsO_{3} group and the phenyl ring of dppf.

E lectrochemical studies

Table 6 summarises the electrochemical data for the nitridobridged osmate(viII) complexes. The cyclic voltammogram of complex 4 shows an irreversible reduction wave at ca. -1.23 V

Fig. 5 Cyclic voltammogram of $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{NOsO}_{3}\right) \mathrm{Cl}\right]$. Supporting electrolyte: $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NBu}^{\mathrm{n}}{ }_{4} \mathrm{FF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; working electrode glassy carbon; scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$

Table 6 Formal electrode potentials (E°) for nitrido-bridged osmate(viii) complexes ${ }^{\text {a }}$

	$\mathrm{E}^{\circ} \mathrm{N}$ vs. ferrocene-ferrocenium	
Compound	Oxidation	Reduction
$\left[\mathrm{NOSO}_{3}\right]^{-}$		$-1.45{ }^{\text {b }}$
[$\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NOsO}_{3}\right)$]		$-1.31{ }^{\text {b }}$
[Pt (Bupy) Cl_{2}]		$-2.13{ }^{\text {b }}$
trans-[Pt(Bupy$\left.)_{2}\left(\mathrm{NOSO}_{3}\right)_{2}\right]$		$-1.23{ }^{\text {b }}$
[$\mathrm{Pt}(\mathrm{dppf}) \mathrm{Cl}_{2}$]	0.56	$-2.13{ }^{\text {b }}$
$\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right]$	0.86	$-1.34{ }^{\text {b }}$
[$\mathrm{Pt}\left(\mathrm{dppf}\right.$) $\left.\left(\mathrm{NOsO}_{3}\right) \mathrm{Cl}\right]$	0.67	$-1.50{ }^{\text {b }}$
$\left[\mathrm{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NOsO}_{3}\right)\right]$		$-1.67{ }^{\text {b }}$
$\left[\mathrm{Os}\left(\mathrm{N} \mathrm{Bu}^{\mathrm{t}}\right) \mathrm{O}_{3}\right.$]		0.92

${ }^{\text {a }}$ Supporting electrolyte: $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NBu}_{4} \mathrm{PF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; working electrode glassy carbon; scan rate $=100 \mathrm{mV} \mathrm{s}^{-1}$. ${ }^{\text {b }}$ |rreversible, E_{pc} values.
vs. $\mathrm{Cp}_{2} \mathrm{Fe}{ }^{+/ 0}\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. This reduction wave is tentatively attributed to the $\mathrm{Os}^{\mathrm{VIIII}}-\mathrm{Os}^{\mathrm{VIII}}$ reduction because the Pt-centred reduction for cis- $\left[\mathrm{Pt}(\mathrm{Bupy})_{2} \mathrm{Cl}_{2}\right]$ was found at a more negative potential (ca. -2.13 V). The reduction of $\mathrm{Os}^{\mathrm{vIIII}}$ in 4 occurs at a less negative potential than that in $\left[\mathrm{NOsO}_{3}\right]^{-}$(ca. -1.45 V under the same conditions), suggestive of delocalisation of electrons from $\left[\mathrm{NOSO}_{3}\right]$ to $\mathrm{Pt}^{\prime \prime}$ in complex 5.
The cyclic voltammogram of complex $\mathbf{1 1}(\mathrm{Fig} .5)$ shows a reversible coupleat $0.67 \mathrm{~V}\left(\Delta \mathrm{E}_{\mathrm{p}}=80 \mathrm{mV}, \mathrm{i}_{\mathrm{a}} / \mathrm{i}_{\mathrm{c}} \approx 1\right.$ and is scan rate independent) along with an irreversible reduction wave at -1.50 V vs. $\mathrm{Cp}_{2} \mathrm{Fe}^{+/ 0}$. The oxidation couple is assigned as the ferrocene-centred $\mathrm{Fe}^{\mathrm{III}}-\mathrm{Fe} \mathrm{e}^{\text {II }}$ couple. H owever, it seems that this oxidation couple might also have some Pt ${ }^{\text {III }}-\mathrm{Pt}^{\prime \prime}$ character because the oxidation potential for the $\left[\mathrm{Pt}(\mathrm{dppf}) \mathrm{X}_{2}\right]$ complexes shows a dependence on the nature of X. It decreases from $\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}\right](0.866 \mathrm{~V}),\left[\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{NOsO}_{3}\right) \mathrm{Cl}\right](0.67 \mathrm{~V})$ to $\left[\mathrm{Pt}(\mathrm{dppf}) \mathrm{Cl}_{2}\right](0.56 \mathrm{~V})$. This order is consistent with the trend of donor strength of $\mathrm{X}: \mathrm{Cl}>\mathrm{NOsO}_{3}>\mathrm{O}_{3} \mathrm{SCF}_{3}$. The irreversible wave at -1.50 V in 11 is tentatively assigned as the osmiumcentred reduction because the reduction of $\mathrm{Pt}^{\mathrm{II}}$ for $[\mathrm{Pt}(\mathrm{dppf})$ Cl_{2}] was found at a very negative potential (ca. -2.13 V).

The cyclic voltammogram of complex 5 shows an irreversible reduction wave at -1.67 V vs. $\mathrm{Cp}_{2} \mathrm{Fe}^{+/ 0}$. This was tentatively attributed to the reduction of $\mathrm{Os}^{\text {vili }}-\mathrm{O} \mathrm{s}^{\text {vil }}$ because the iridiumcentred reductions for Vaska-type compounds are known to occur at more negative potentials (<-2.00 V vs. $\mathrm{Ag}^{+}-\mathrm{Ag}$). ${ }^{14} \mathrm{On}$ the basis of the potential at which $\mathrm{Os}^{\mathrm{V} I I I}$ in $\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{NOsO}_{3}\right]$ is reduced, the donor strength of the fragment $\mathrm{L}_{\mathrm{n}} \mathrm{M}$ can be ranked in the order $\left\{I \mathrm{r}^{\prime}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right\}>\left\{\mathrm{Au}^{\prime}\left(\mathrm{PPh}_{3}\right)\right\}>\left\{\mathrm{Pt}^{\prime \prime}(\mathrm{Bupy})_{2}\right\}$. This trend is in agreement with the order of electronwithdrawing power of the metal centre: $\mathrm{Ir}^{\prime}<\mathrm{Au}^{\prime}<\mathrm{Pt} \mathrm{t}^{\prime \prime}$. It might also be noted that the $\mathrm{Os}^{\text {vIII }}-\mathrm{O} s^{\mathrm{VIII}}$ reduction potential for $\left[\mathrm{Os}\left(\mathrm{NBu}^{\mathrm{t}}\right) \mathrm{O}_{3}\right]$ is found to be less negative than those for

Table 7 Structural and IR spectral data for nitrido-bridged osmate(viii) complexes

Complex	$\mathrm{d}(\mathrm{Os}=\mathrm{N}) / \AA$	$\mathrm{d}(\mathrm{Os}=0) / \AA$	$v(0 \mathrm{~s}=\mathrm{N}) / \mathrm{cm}^{-1}$	$v(\mathrm{Os}=0) / \mathrm{cm}^{-1}$
$\left[\mathrm{NOSO}_{3}\right]^{-\mathrm{a}}$	1.67(2)	1.744 (1)	1073	891, 871
[$\left.\mathrm{NOSO}_{3}\right]^{-}$in 7	1.696(9)	1.706(9)	1104	888
$\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NOsO}_{3}\right)\right]^{\text {b }}$	1.69(2)	1.71	1088	894
cis-[$\left.\mathrm{Pt}\left(\mathrm{PM} \mathrm{e} \mathrm{e}_{3}\right)_{2}\left(\mathrm{NOsO}_{3}\right)_{2}\right]^{\text {b }}$	1.68(4)	1.76	1088	894
trans-[Pt(Bupy) ($^{\left.\left(\mathrm{NSO}_{3}\right)_{2}\right]}$	1.681(7)	1.724	1078	888, 906
[$\mathrm{Pt}\left(\mathrm{dppf}\right.$)($\left.\left.\mathrm{NOsO}_{3}\right) \mathrm{Cl}\right]$	1.655(1)	1.67	1096	888, 908
$\left[\mathrm{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NOsO}_{3}\right)\right]$	1.710(7)	1.718	1098	886, 896, 908
$\left[\{\mathrm{Rh}(\mathrm{cod})\}_{2}\left(\mu-\mathrm{NOSO}_{3}\right)_{2}\right]$				904
$\left[\mathrm{Os}\left(\mathrm{NBu}^{\text {t }} \mathrm{O}_{3}{ }^{\text {c }}\right.\right.$	1.697	1.715	1184	912,925

${ }^{\text {a }}$ Structural data for $\mathrm{CS}\left[\mathrm{NOSO}_{3}\right]$, Raman spectrum of aqueous $\mathrm{K}\left[\mathrm{NOSO}_{3}\right]$ (ref. 17). ${ }^{\mathrm{b}}$ Ref. $5 .{ }^{\mathrm{C}} \mathrm{R}$ ef. 18.
$\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{N} \equiv \mathrm{OsO}_{3}\right]$, indicating that the donor strength of nitride is significantly reduced upon formation of a $\mathrm{C}-\mathrm{N}$ covalent bond.

Structural and IR spectral data for osmate(viII) complexes

Table 7 summarises the structural and IR spectra data for the nitrido-bridged osmate(viII) complexes $\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{N}=\mathrm{OsO}_{3}\right]$. It appears that neither the $\mathrm{O} \mathrm{s}=\mathrm{N}$ nor the $\mathrm{Os}=\mathrm{O}$ distances for these complexes are significantly changed upon co-ordination to the metal ($\mathrm{M}_{\text {) }}$ despite the large estimated standard deviation (es.d.) values for these structural data. In all cases, the $\mathrm{Os}=\mathrm{N}-\mathrm{M}$ linkage is linear with an $\mathrm{Os}=\mathrm{N}$ triple bond and an $\mathrm{M}-\mathrm{N}$ single bond. This suggests that these bimetallic complexes are best formulated as the unsymmetrically nitrido-bridged complexes $\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{N} \equiv \mathrm{OSO} \mathrm{O}_{3}\right]^{19}$ U nlike imido(trioxo)osmium(viII) complexes [$\mathrm{Os}(\mathrm{NR}) \mathrm{O}_{3}$], the $\mathrm{M}-\mathrm{N}$ bond in $\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{N} \equiv \mathrm{OsO}_{3}\right.$] is of donoracceptor typeonly and is rather weak. A ccordingly, the [NOsO_{3}] group in these complexes is found to be substitution labile.

The IR stretching frequency is found to be more sensitive than the bond length to the change in bond strength. In general, $v(\mathrm{O}=\mathrm{N})$ for $\left[\mathrm{N} \mathrm{OsO}_{3}\right]$ increases upon co-ordination to metal. A similar observation has been reported for the complexation of Lewis acids with $\left[\operatorname{Re}(\mathrm{N}) \mathrm{Br}_{4}\right]^{-} .{ }^{20}$ The strengthening of the $\mathrm{O} \mathrm{s}=\mathrm{N}$ bond in $\left[\mathrm{NOSO}_{3}\right]^{-}$upon metal complexation may be explained by the fact that the lone pair on the nitride has anti-bonding character. In addition, $v(0 \mathrm{~s}=0)$ for $\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{N} \equiv \mathrm{OsO}_{3}\right]$ complexes are found to be higher than those for $\left[\mathrm{NOsO}_{3}\right]^{-}$, indicating that the donor strength of the nitride is weakened upon coordination to metal. For $\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{N}=\mathrm{OsO}_{3}\right] \mathrm{v}(\mathrm{Os}=0)$ is, however, lower than that for [$\mathrm{Os}(\mathrm{NR}) \mathrm{O}_{3}$] (Table 7) because the donoracceptor type $\mathrm{M}-\mathrm{N}$ bond is weaker than a $\mathrm{C}-\mathrm{N}$ covalent bond. On the basis of $v(0 s=0)$ it can be concluded that the donor strength for NX in $\left[\mathrm{Os}\left(\mathrm{NX}_{3} \mathrm{O}_{3}\right.\right.$] decreases in the order $\mathrm{N}^{3-}>\left(\mathrm{L}_{\mathrm{n}} \mathrm{M} \mathrm{N}\right)^{2-}>\mathrm{RN}^{2-}$, which is consistent with the electrochemical data (see above). The complexes $\left[\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{N} \equiv \mathrm{OsO}_{3}\right]$ are less reactive than $\left[\mathrm{Os}(\mathrm{NR}) \mathrm{O}_{3}\right]$, e.g. in cycloaddition reactions with alkenes, ${ }^{2}$ possibly because the former complexes are more electron-rich and thus less electrophilic than the latter.

Acknowledgements

The financial support from the Hong Kong University of Science and Technology and the H ong K ong R esearch Grants Council is gratefully acknowledged.

References

1 R . Criegee, J ustus L iebigs A nn. C hem., 1936, 522, 75; M . Schröder, Chem. Rev., 1980, 80, 107 and refs. therein; W. B. M otherwell and A. S. Williams, Angew. Chem., Int. Ed. Engl., 1995, 34, 2031.

2 K. B. Sharpless, D. W. Patrick, L. K. Truesdale and S. A. Biller, J. A m. Chem. Soc., 1975, 97, 2305; K . B. Sharpless, A . O. Chong and K . Oshima, J. Org. Chem., 1976, 41, 177.
3 H.C. H olb, M. S. VanN ieuwenhze and K.B. Sharpless, Chem. Rev., 1994, 94, 2483 and refs. therein.
4 G. Liu, H. T. Chang and K. B. Sharpless, A ngew. Chem., Int. Ed. Engl., 1996, 35, 45; J. Rudolph, P. C. Sennhenn, C. P. Vlaar and K . B. Sharpless, A ngew. Chem., Int. Ed. Engl., 1996, 35, 2810; G. Li, H. H. A ngert and K. B. Sharpless, A ngew. Chem., Int. Ed. Engl., 1996, 35, 2813.
5 W.-H. Leung, J. L. C. Chim and W.-T. Wong, J. Chem. Soc., D alton Trans., 1996, 3153.
6 A. F. Clifford and C. S. K obayashi, I norg. Synth., 1960, 6, 204.
7 G. B. K auffamn, Inorg. Synth., 1963, 7, 249.
8 M. P. Brown, R. J. Puddephatt, M. Rashidi and K. R. Seddon, J. C hem. Soc., D alton Trans., 1977, 951.

9 J. P. Collman and M. K ubota, Inorg. Synth., 1990, 28, 92.
10 U. K ölle, R. Görissen and T. Wagner, Chem. Ber., 1995, 128, 911.

11 D. A. Clemente, G. Pilloni, B. Corain, B. Longato and M . Tiripicchio-C amellini, Inorg. C him. A cta, 1986, 115, L 9.
12 N. W. Hoffman, N. Prokopuk, M. J. Robbins, C. M. Jones and N. M . D oherty, I norg. C hem., 1991, 30, 4177.

13 M. R ahim and K. J. A hmed, Organometallics, 1994, 13, 1751.
14 G. J. Leigh and R. L. Richards, in Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. A bel, Pergamon, Oxford, vol. 5, p. 543.
15 D. J. Berrisford, C. Bolm and K. B. Sharpless, A ngew. Chem., Int. Ed. Engl., 1995, 34, 1059.
16 C. A. Reed and W. R. Roper, J. C hem. Soc., D alton Trans., 1973, 1370.

17 W. A. N ugent and J. M. M ayer, M etal-Ligand M ultiple Bonds, Wiley, N ew York, 1988, p. 126.
18 B. S. M cGilligan, J. A rnold, G. Wilkinson, B. Hussain-Bates and M . B. H ursthouse, J. C hem. Soc., D alton Trans., 1990, 2465.
19 K. Dehnicke and J. Strähle, A ngew. Chem., Int. Ed. Engl., 1992, 31, 955.

20 W. K afitz, F. Weller and K . D ehnicke, Z. A norg. Allg. Chem., 1982, 590, 175.

[^0]: \dagger D edicated to the memory of Professor Sir Geoffrey Wilkinson. \ddagger E-M ail: chleung@usthk.ust.hk

